Development of a Forecast Capability for Coastal Embayments of the Mississippi Sound

- Define the forecast system
- Describe circulation model
- Circulation sensitivity studies
 - tide and river flux forcing
 - wind forcing
 - ocean boundary forcing
- Forecasting example

Embayment and River Models of the MS Sound

^{*}Veeramony, J. and C. A. Blain, in review, 2002. Numerical experiments of bay/shelf exchange, Continental Shelf Research.

^{*}Blain, C. A. and J. Veeramony, 2002. The Role of River Discharge and Vertical Mixing Formulation on Computed Circulation in Bay St. Louis, MS, in *Estuarine and Coastal Modeling, Proceedings of the Seventh International Conference*, M. L. Spaulding and K. Bedford, eds., American Society of Civil Engineers, pp.745-764.

FORECAST SYSTEM

ADvanced CIRCulation Model¹

- 2D/3D nonlinear coastal hydrodynamics
 - complete range of dynamical forcing:
 tides, wind, waves, rivers, temp, salinity,
 offshore models
 - handles shoreline inundation/recession
- Finite element-based discretization
 - new conservative finite element formulation
 - mesh flexibility to:
 - represent coastlines and/or sharp gradient region
 - large domains possible, used to obtain open BCs
- History of real-time forecasting

SENSITIVITY TO TIDE AND RIVER FORCING

A Model of Bay St. Louis, MS

Sensitivity of Bay-Shelf Exchange to Forcing

INITIAL POSITION OF SURFACE DROGUES

Drogues released at 0.1 m depth at 4 locations in the bay.

On average 100-175 drogues are released at each location.

Sensitivity of Bay-Shelf Exchange to Forcing

A Model of the Pearl River, MS N30°26'15" Pearl River covers nearly 34,900 acres N30°22'30' • Flat terrain with poor drainage Subject to annual flooding WEST PEARL <mark>●Sl</mark>idell N30°11'15" EAST PEARL

A Model of the Pearl River, MS

Sensitivity of River Flow to Forcing

Sensitivity to Tide and River Forcing

Results

- 3D circulation necessary even in shallow water
- Dependency on forcing event (seasonal, mean, extreme)
- Location and magnitudes of applied river forcing important

Improvements

- Look at variable friction coefficients
- Better forcing
- More nonlinearities

SENSITIVITY TO WIND FORCING

Wind Velocity Sources

Product Navy COAMPS
Resolution 27 km
Frequency 3 hr

COAMPS: 2002103000

Wind Stress Analysis m/s

20N

10N

120W 100W 80W 60W

NDBC buoy station 42007 point (30.09N, 88.77W)

1 hr

Wind stresses computed using the formulation of Garratt, (1977):

$$\frac{\tau_{\phi,\lambda}}{\rho_o} = C_d \frac{\rho_{air}}{\rho_o} |W| W_{\phi,\lambda}$$

15 day period, May 15-29, 2001

Results

- Winds contribute significantly to the circulation pattern
- Wind effect on circulation very localized (depends on tide)
- Source of winds matters
 - model vs. measured
 - resolution of winds

SENSITIVITY TO OPEN OCEAN FORCING

Open Ocean Forcing – Large Domain Model

EC2001

Tidal Database

Product:

6 tidal constituents M₂, S₂, N₂, K₁, O₁, Q₁

Model information:

Version: ADCIRC 41.11a 2D, wetting and drying MPI parallelization

Timestep: 5s

Run length: 90 days

Forcing:

Grid Information: Number of nodes: 254,565 25 Number of elements: 492,182 Resolution: 200m - 26.7km 40 20 35 Latitude (deg) 15 10 20 15 10 5[∟] -100 -90 -80-70-60Longitude (deg)

Specified elevation from Grenoble (FES95.2.1) global database (7 constituents)

Sensitivity to Boundary Forcing

FUNDY is a linear, barotropic finite element frequency domain model TRUXTON computes the direct inverse of FUNDY

Sensitivity to Boundary Forcing

Mean abs. value of modulus of complex correlations

Sensitivity to Open Ocean Forcing

Results

- Propagation of boundary information frequency dependent
- Inverse model 'correlation' matrix an excellent tool for examining the influence of boundary values/location

AUVFEST 2001 – Prototype System

Development of a Forecast Capability for Coastal Embayments of the Mississippi Sound

Purpose of Sensitivity Studies

- achieve relocatability
- determine required accuracy of forcing
- assess modeled dynamics

Future of the Forecast System

- Combine embayment models into seamless representation of the near-coastal waters
- Focus on river dynamics and shoreline inundation
- Advance real-time prediction to include all relevant forcing
- Pursue model coupling at offshore boundary

Open Ocean Forcing – Model Nesting

Incremental Data Assimilation

FUNDY is a linear, barotropic finite element frequency domain model **TRUXTON** computes the *direct inverse* of FUNDY

Automated Script Infrastructure

